Палетка для математики — модели изготовления и правила использования

Для математических вычислений площади сложных фигур правильно использовать заводской набор. В инструкции от производителя школьник может найти следующую информацию: для чего нужна палетка по математике, из каких материалов она изготовлена, как нужно её использовать. Внешне модель выглядит, как прозрачная пластина либо плёнка с разлиновкой в клетку.

С учётом параметров фигуры, площадь которой необходимо найти, образец разделяется на квадратные миллиметры, сантиметры, дециметры. Некоторые фирмы производят подобные инструменты с магнитной основой. Выбор зависит от предпочтений ребёнка и условий задачи.

Но можно сделать палетку по математике и своими руками.

Для этого потребуются следующие материалы:

  • лист в клеточку;
  • карандаш;
  • скотч;
  • линейка.

Если предстоит работа с маленькими величинами, рекомендуется воспользоваться миллиметровой бумагой. Внешне самодельная палетка схожа на заводскую — расчерчена на клетки гибкого листа, предназначенного для нахождения площадей неправильных и правильных фигур, а также выполнения иных упражнений.

Самостоятельный шаблон будет стоить дешевле, чем заводской.

Кроме перечисленных материалов, потребуется прозрачная плотная полиэтиленовая обложка для дневника или тетради. Нужно измерить ее и расчертить ручкой на квадраты со сторонами 1 см. Данный шаблон будет иметь размеры 10х10 см. Если для изготовления применяется миллиметровка, рекомендуется обклеить её сверху скотчем, повторно расчертив клетки. Таким способом продлевается срок эксплуатации инструмента и дополнительно он защищается от влаги.

Чтобы сделать палетку площадью в 100 кв. см, потребуется придерживаться следующего алгоритма:

  • На листе в клетку отображается схема инструмента.
  • На палетку накладывается обложка.
  • Правильно обводятся клеточки. Чтобы инструмент выглядел аккуратно, используется линейка.
  • Вырезается готовый шаблон.

ЗЕМЕЛЬНЫХ УЧАСТКОВ

Методические указания по выполнению

УКД 528.48.068.03: 625

А 674

, . Способы определения площадей земельных участков. Методические указания по выполнению лабораторной работы. – Хабаровск: ДВГУПС, 2010. – 18 с.

Методические указания соответствуют требованиям ГОС ВПО по направлениям подготовки дипломированного специалиста 653600 «Транспортное строительство» и 653500 «Строительство».

Указания разработаны в соответствии с программой курса инженерной геодезии для строительных специальностей и предназначено студентам всех форм обучения, изучающих дисциплину ‘‘Инженерная геодезия’’.

В методических указаниях изложена методика выполнения лабораторной работы по способам определения площадей, приведены примеры вычислений и образцы оформления работы.

А 674

Ó ГОУ ВПО  «Дальневосточный государственный университет путей сообщения» (ДВГУПС), 2010

Изучение «Инженерной геодезии» складывается из лекционных, лабораторных, практических работ и полевой практики. Использованию методического указания должно предшествовать изучение соответствующих разделов учебника. Это требование должно обязательно выполняться студентами.

Наличие в методическом указании краткого описания основных понятий и формул для вычислений обусловлено необходимостью обратить внимание студентов на существо вопроса перед переходом к закреплению материала путем выполнения лабораторной работы. Выполнение лабораторной работы рассчитано на два часа занятий.

Настоящее методическое указание к лабораторной работе имеет своей целью дать студентам первого курса строительных специальностей знания по методам и приемам определения площадей с учётом погрешностей всех геодезических измерений. В методическом указании приведены методы и приемы определения площадей, рассмотрены вопросы точности определения площадей с учетом погрешностей всех геодезических измерений.

Для закрепления теоретических знаний и практических навыков в методическом указании приведены контрольные вопросы для самоконтроля.

1. ОПРЕДЕЛЕНИЕ ПЛОЩАДЕЙ

Составление различного рода проектов, связанных с использованием земельной территории, изучение её природных богатств, учет и инвентаризация земель требует определения площадей. При проведении этих работ определяются площади небольших участков или больших земельных массивов, суммы площадей нескольких несмежных участков, обладающих одними и теми же природными или хозяйственными признаками.

К таким площадям могут относиться различные сельскохозяйственные территории (луга, пашни, огороды), лесонасаждения, площади под планировку и застройку. А также территории осушения (болота), площади бассейнов водотоков (рек и оврагов), границы затоплений, водные пространства (озера, пруды, водохранилища), площади насыпей и выемок для подсчета объемов земляных дорог и других сооружений [3].

В одних случаях достаточно ограничиться общими сведениями о площади участков и массивов, а в других случаях необходимы более точные способы определения площадей и погрешность даже в несколько десятых долей процента считается недопустимой. Поэтому наряду с определением площади очень часто требуется знать и точность её определения. При определении площадей по результатам измерений на местности точность зависит от качества этих измерений, в то время как при измерении площади по плану (или карте) на точность площади влияет качество измерений на местности, по которым составляется план или карта, графических построений участка на плане и определения площади по плану.

В зависимости от хозяйственной значимости участков и массивов, их размеров, конфигурации и вытянутости, наличия планово – топографического материала, топографических условий местности применяют следующие способы определения площадей:

1. Аналитический способ — когда площадь вычисляется по результатам измерений линий на местности или по их функциям (координатам вершин участка);

2. Графический способ — когда площадь вычисляется по результатам измерений линий на плане (карте);

3. Механический способ — когда площадь определяется по плану при помощи специальных приборов (планиметров).

Иногда эти способы применяются комбинированно. Например, общая площадь определяется аналитическим способом (по координатам вершин), а площади внутренних контуров – графическим или механическим способом. Далее в методическом указании будет более подробно рассмотрен каждый из выше перечисленных способов определения площадей.

1.1 Аналитический способ определения площадей

Цель: ознакомиться и получить навык определения площадей аналитическим способом.

Вычисление площади этим способом производится по формулам геометрии, тригонометрии и аналитической геометрии. Исходными данными для вычисления служат измеренные в натуре углы или их функции – координаты.

Если участок представляет собой простейшую геометрическую фигуру (треугольник, трапецию и др.), то площадь его вычисляют по общеизвестным формулам геометрии или тригонометрии [4,5]. Площади многоугольников вычисляют обычно по координатам вершин (рис. 1).

Рис. 1. Вычисление площади многоугольника по координатам.

Площадь замкнутого контура () в этом случае определяется по формулам [5]:

, (1)

(2)

где i — это порядковый номер вершин контура от 1 до n; n — число вершин полигона; x, y — координаты вершин контура.

При подстановке i = 1 получим в первой формуле x0 x2, а второй y2 y0, где вместо x0 и y0 необходимо подставить xn и yn; если при подстановке i = n получим в первой формуле xn-1 xn+1, во второй yn+1 yn-1, где вместо xn+1, yn+1 необходимо подставить x1 и y1 (так как нулевая точка предшествует первой, а в данном случае первой вершине предшествует вершина n; точка n + 1 следует за точкой n, а в данном случае за вершиной n следует первая вершина) [4,5]. Вычисление площади производиться для контроля по обеим формулам.

В таблице 1 приведен пример расчета площади при помощи аналитического способа. В соответствие с рисунком 1 в графах 1 и 2 таблицы 1 заданы прямоугольные координаты каждой вершины замкнутого полигона.

Разности координат xi-1 xi+1 и yi+1 yi-1 с соответствующим знаком запишем в графы 3 и 4. Например, для вершины 1 разность будет складываться из координаты последующей вершины 2 (Х2 = 209,43) и координаты предыдущей вершины 6 (Х6 = 209,43). Результат перемножения соответственно граф 2 и 3, а также 1 и 4 запишем в графы 5 и 6.

Таким образом, площадь участка составляет 0998 м2 или 14,1 га. Вычисление разностей координат контролируется тем, что алгебраическая сумма, как разностей координат X, так и разностей координат Y должна равняться нулю, либо при составлении разностей каждая координата входит как со знаком плюс, так и со знаком минус. Совпадение сумм произведений в обоих случаях указывает на отсутствие ошибок вычислений.

Сумма произведений соответствует удвоенной площади полигона в квадратных метрах, так как координаты даны в метрах.

Точность аналитического способа 1/1000. При определении площади этим способом на точность влияют только погрешности измерений на местности.

Ссылка на основную публикацию
Статьи на тему:

Adblock
detector