Как найти площадь треугольника с помощью палетки

Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобрев в каталоге.

Получите невероятные возможности

Конспект урока «Палетка. Измерение площади фигуры с помощью палетки»

Вы знаете, я хотела узнать площадь нашей страны, но мне это не сразу удалось сделать. Дело в том, что её границы имеют неправильную форму – это не прямоугольник, не квадрат, и даже не круг.

Я обратилась за помощью к нашей царице, и она рассказала мне, как находить площадь любой, самой искривлённой фигуры. Царица дала мне вот такое простое приспособление. Это прозрачная пластина или плёнка с разлиновкой в клеточку. Называется она – палетка. В зависимости от размера фигуры, площадь которой надо узнать, палетка может быть разделена на квадратные миллиметры, квадратные сантиметры или квадратные дециметры.

Представьте себе, что надо узнать площадь вот такой фигуры.

Накладываем на неё палетку.

Сначала считаем, сколько всего целых квадратиков. Их тридцать четыре. Теперь считаем все оставшиеся кусочки. Их восемь. Люди договорились, что каждые два кусочка засчитывают за один полный квадратик. Поэтому количество кусочков делим на два. Получилось четыре.

Складываем тридцать четыре и четыре. Это тридцать восемь. Значит, площадь этой фигуры – примерно тридцать восемь квадратиков.

Так как в школе чаще всего пользуются палетками, разделёнными на квадратные сантиметры, то вы бы сказали, что площадь данной фигуры примерно равна тридцати восьми квадратным сантиметрам. Почему примерно? Потому что площадь фигуры по палетке вряд ли возможно определить абсолютно точно, ведь редко два кусочка могут идеально заменить целый квадратик.

А теперь попробуем найти площадь вот такой, совершенно бесформенной фигуры.

Опять накладываем на неё палетку. Считаем целые квадратики.

Их семнадцать. Теперь считаем кусочки. Их двадцать четыре. Количество кусочков делим на два и полученное число прибавляем к семнадцати. Получилось примерно двадцать девять квадратных сантиметров.

Иногда случается и так, что количество кусочков – нечётное число, например, тринадцать или двадцать пять. Тогда делим на два ближайшее чётное число, больше данного на один. Ведь всё равно при помощи палетки точно площадь фигуры измерить невозможно. А вот почему берём чётное число больше данного, вы узнаете в пятом классе.

Запомнили, ребята, как мы определяем площадь фигур с помощью палетки?

̶ Накладываем палетку на фигуру.

̶ Считаем количество целых квадратов.

̶ Считаем количество кусочков.

̶ Количество кусочков делим на два…

̶ Складываем полученное число с количеством целых квадратов….

̶ Записываем ответ.

Видите, всё просто!

Кстати, именно так, используя план местности и палетку, можно найти площадь участка земли, или озера, или целого города, и даже страны. Вот этим я сейчас и займусь. Пока, ребята!

По теме: методические разработки, презентации и конспекты

Урок математики в 4 классе. Тема: «Измерение площади фигур с помощью палетки»

Преподаватель: Щербаль Светлана Александровна, учитель начальных классов МОУ Крутихинская основная общеобразовательная школа Крутихинского района, Алтайского края Тема – Измерение площади фигур с пом.

«Измерение площади фигуры с помощью палетки», технология проблемного обучения

Технология проблемного обучения Актуальность данной технологии определяется развитием высокого уровня мотивации к учебной деятельности, активизации познавательных интересов уч.

«Измерение площади фигур с помощью палетки»

Урок математики в 4 классе с применением ЦОР.Цель: познакомить со способом измерения площади фигуры с помощью палетки.

Конспект урока по математике по теме «Измерение площади фигуры с помощью палетки»

Найти способ измерения площади фигур с помощью палетки, измерять площади геометрических фигур с помощью палетки.

Открытый урок по математике по теме:» Измерение площади фигур при помощи палетки»

Технологическая карта открытого урокаТема:»Измерение площади фигуры. Палетка». Цель: Познакомить детей со способом нахождения площади фигур различной формы с помощью палетки, реша.

Презентация + конспект урока математики «Измерение площади фигуры с помощью палетки» (4 кл. УМК «Школа России»)

Цель:Познакомить учащихся со способом нахождения площади фигур различной формыс помощью палетки, закрепить знание единиц площади и единиц длины.Планируемые образовательные результатыПредметные.

Палетка. Измерение площади фигур с помощью палетки. Математика. 4 класс.

Математика. 4 класс. УМК «Школа России». Палетка. Измерение площади фигур с помощью палетки. Цель:Ознакомиться с палеткой и научиться измерять фигуры с помощью палетки.

Измерение площади фигуры с помощью палетки

В школе дети знакомятся с большим количеством измерительных приборов и приспособлений.
Инна СЫЧЕВА, учитель школы № 1936 г. Москвы, показывает, как вычисляется площадь фигуры с помощью одного из таких приспособлений – палетки.

Тема. «Измерение площади фигуры с помощью палетки».

Цели. Научить выполнять приближенное вычисление площадей; познакомить с вычислением площади с помощью палетки по алгоритму; повторить единицы длины и единицы измерения площади; развивать мышление, внимание, память.

Оборудование. Учебник «Математика» (4-й класс, часть 1, авт. М.И. Моро и др.), таблица алгоритма, палетки, индивидуальные карточки, экран, эпидиаскоп, пленки с фигурами.

I. Организационный момент

II. Сообщение темы урока

Учитель. Сегодня на уроке вы научитесь выполнять приближенное вычисление площади и познакомитесь с приспособлением для этого.

III. Знакомство с новым материалом

У. Рассмотрите фигуру на экране.

– Сколько места занимает фигура А на плоскости? Другими словами, какова ее площадь?

Выслушиваются ответы детей.

– Ответ на этот вопрос мы можем дать лишь приблизительно, указав границы, в которых находится площадь фигуры А . Площадь фигуры больше 6 клеток, но меньше 16.

Результат записывают на доске с помощью знака приближенного равенства ».

– Значит, площадь нашей фигуры приблизительно 11 квадратных единиц.

Все это мы смогли вычислить благодаря тому, что фигура А была разбита на клетки. Что делать, если таких клеток нет?

Дети. Самим расчертить фигуру на квадраты.

У. Правильно, но на это уйдет много времени. Чтобы ускорить работу, люди придумали приспособление для определения площади фигур.

Учитель раздает детям прозрачные пленки, расчерченные на квадратные сантиметры, и карточки с фигурами.

– Перед вами такое приспособление. Откройте учебники на странице 49 и прочитайте, как оно называется.

Д. Для приблизительного определения площади фигуры используется палетка .

Палетка – прозрачная пленка, разделенная на одинаковые квадраты: это могут быть квадратные дециметры, квадратные сантиметры, квадратные миллиметры.

У. Посмотрите на ваши палетки. Как они разделены?

Д. На квадратные сантиметры.

У. В учебнике на странице 49 на цветные фигуры так же наложена палетка, разделенная на квадратные сантиметры. Прочитайте, как находили площадь фигуры голубого цвета.

Дети читают текст, отмеченный красной чертой.

– Чему равна площадь этой фигуры?

Д. Примерно 31 квадратный сантиметр.

У. Попробуем вывести формулу, по которой приблизительно считается площадь.

Дети вместе с учителем выводят и записывают формулу.

– Найдите площадь фигур зеленого и розового цветов.

Д. Площадь зеленой фигуры приблизительно равна 6 + 16: 2 = 14 квадратных сантиметров.

– Площадь розовой фигуры приблизительно равна 5 + 16: 2 = 13 квадратных сантиметров.

У. Возьмите в руки карточки с изображенными на них фигурами. С помощью палетки найдите их площадь.

Дети выполняют задание.

– Попробуем вывести алгоритм нахождения площади фигуры с помощью палетки.

Учитель записывает каждый шаг на доске.

IV. Физкультминутка

V. Практическая работа

У. Нарисуйте на листе бумаги какую-нибудь замкнутую линию и найдите площадь фигуры, ограниченной этой линией.

Дети выполняют задание в тетради, находят площадь, называют свои ответы.

– Начертите циркулем окружность радиусом 4 сантиметра, найдите с помощью палетки площадь получившегося круга.

Дети находят площадь.

VI. Закрепление пройденного материала

У. Найдите задание 265 на странице 50. Задание выполняем по вариантам: вариант 1 – первая часть номера, вариант 2 – вторая часть.

Дети самостоятельно выполняют задание.

– Поменяйтесь тетрадями и проверьте работу ваших соседей.

Дети делают проверку.

– Вычислите периметр и площадь многоугольника.

– Решите логическую задачу. Для каждой фигуры объясните, почему она лишняя.

Д. Сначала уберем фигуру В , так как среди четырехугольников – треугольник. Затем уберем фигуру С , так как останутся фигуры с попарно равными сторонами. Уберем фигуру D , так как в ней углы не прямые.

VII. Самостоятельная работа

У. Выполните упражнения 267 и 262.

Дети выполняют работу и сдают тетради.

VIII. Итог урока

У. С помощью какого инструмента вы научились находить приближенное значение площади фигуры?

Д. С помощью палетки.

У. Какой формулой вы пользовались?

Д. S = а + в : 2.

У. Кто из вас научился выполнять приближенное вычисление площади фигуры?

Дети поднимают руки.

IХ. Домашнее задание

Учитель раздает карточки с цифрой 5 :

У. Дома вычислите площадь цифры и решите задачи 261 и 263.

«Площади фигур геометрия» — Площади фигур. Равные фигуры имеют равные площади. Решите ребус. Квадратный миллиметр. Фигуры разбиты на квадраты со стороной 1см. Площадь треугольника. Равные фигуры б). в). чему будет равна площадь фигуры составленной из фигур А и Г. Теорема Пифагора. Прямоугольник, треугольник, параллелограмм. Среди фигур приведенных на рисунке укажите.

«Равновеликие фигуры» — Равновеликие фигуры. Трапеция. Площадь треугольника. В параллелограмме вырезан параллелограмм. Сторона. Диагонали. Дополнительные задачи. Прямая, проходящая через точку пересечения диагоналей. Равновелики ли равные фигуры. Зависимость. Площади параллелограммов. Разрежьте прямоугольник по прямой линии.

«Число Пи» — Важным достижением в изучении числа? было выяснение его теоретико-числовой природы. Первый шаг в изучении свойств числа? сделал Архимед. В сочинении «Измерение круга» Архимед вывел знаменитое неравенство. Загадка таинственного числа не разрешена вплоть до сегодняшнего дня. ? нельзя представить в виде дроби.

«Методы вычисления площадей фигур» — Разрезание. Формула Пика. Площадь трапеции. Теорема Пика. Козьма Прутков. Методы вычисления площадей фигур. Площадь четырехугольника. Найдите площадь четырехугольника. Площадь прямоугольника. Площадь треугольника. Площадь параллелограмма. Площадь ромба. Число целочисленных точек. Дополнительное построение.

«Площадь многоугольника» — Площадь фигуры (многоугольника). Применив первое свойство получаем, что SABCD = SHBCH1, а значит SABCD = AD х ВН ч.т.д. Sромба =d1d2. Перед Вами поставлена задача, раскрасить дом! Какова площадь окрашиваемой поверхности? Свойство № 2. Вычислить площадь ромба диагонали которого равны 6 и 8 см. Разминка з а д а н и е 1.

«Вычисление площадей фигур» — Площади фигур. Ал — Караджи. Мы знаем формулу площади квадрата. Треугольник. Мы знаем формулу площади треугольника через сторону и высоту. Можно вывести формулу для одного из оснований. Математические работы. Трапеция. Проверь себя. Мы знаем формулу площади трапеции. Понятие площади. Равнобедренный и равносторонний треугольники.

Всего в теме 41 презентация

Площади небольших участков с криволинейными граница­ми можно измерять с помощью палеток. Палетка для измере­ния площадей – лист прозрачного материала (восковки, лавса­на, пластика, кальки), на который нанесена сетка квадратов размером 2×2 мм или система равноотстоящих параллельных линий.

Наложив палетку с сеткой квадратов на план, подсчиты­вают число квадратов, уместившихся в измеряемой площади, оценивая дробные части квадратов на краях участка на глаз. Результат подсчета умножают на площадь одного квадрата.

Так, квадрату размером 2×2 мм на плане масштаба 1:1000 соответствует на местности квадрат 2×2 м, то есть площадь равная 4 м 2 . Если подсчитанное число квадратиков равно 122,4, то площадь участка равна 122,4 · 4 м 2 = 490 м 2 .

Для измерения площади палеткой с параллельными линия­ми ее накладывают на план так, чтобы противоположные края участка расположились посредине между линиями палетки (рис. 5.1).

Отрезки линий палетки, ограниченные контуром участка, можно рассматривать как средние линии трапеций, заключенных на рисунке между пунктирными линиями. Из­мерив длины средних линий d 1 , d 2 , . d n , площадь участка вычисляют по формуле (5.1):

P = h (d 1 + d 2 + … + d n ), (5.1)

где h — расстояние между линиями палетки (в масштабе).

Определение суммы отрезков d 1 + d 2 + … + d n выполняют циркулем-измерителем. Взяв в раствор измерителя отрезок d 1 , переносят измеритель на следующую линию, на продолжение отрезка d 2 и увеличивают раствор так, что в растворе будет набрана сумма d 1 + d 2 . Продолжая, накапливают всю сумму расстояний и определяют ее значение по масштабной линейке.

Прямоугольная палетка построена в виде сетки квадратов. Определение площади прямоугольной палеткой выполняют по способу А.Н. Савича (рис.5.2).

Способ А. Н. Савича применяется при измерении на плане больших площадей. Часть Р 0 площади участка (рис. 5.2), состоящая из целых квадратов, образованных линиями координатной сетки, не требует измерения – она равна сумме известных площадей квадратов. Измеряют площади Р 1 , Р 2 , Р 3 , Р 4 , расположенные на краях участка и составленные

Р = Р 0 + Р 1 + Р 2 + Р 3 + Р 4 . (5.2)

Измерение площадей Р 1 , Р 2 , Р 3 , Р 4 может быть выполнено любым из описанных выше методов (по координатам, по линейно-угловым измерениям).

Аналогично вычисляют и площади Р 2 , Р 3 , Р 4 .

Достоинством способа Савича является то, что значитель­ная часть площади (а именно – Р 0 ) определяется без измере­ний, аналитически. Уменьшение измеряемой части площади и выполнение измерений с контролем повышают точность оп­ределения площади. Кроме того, оказывается учтенной дефор­мация бумаги.

Если значительная часть площади составлена целыми квад­ратами, а измерять приходится лишь малую ее часть, точность способа Савича близка к точности аналитических способов.

5.2 Способы определения площади участка с криволинейными границами

Рекомендации по использованию

Процесс измерения площади с помощью палетки простой, если она изготовлена правильно. Инструмент нужно приблизить к фигуре, наложив его сверху, и произвести расчет целых и неполных квадратов. Сложнее пользоваться палеткой, если все точки плоскости не поместились в неё.

В таком случае рекомендуется придерживаться следующего метода:

  • Разделить фигуру на части.
  • Произвести подсчёт каждой части отдельно.
  • Найти суммарный результат.

Рекомендуется подсчитывать отдельно, сколько целых квадратов вмещается в фигуру и сколько неполных. Площадь фигуры вычисляется по специальной формуле: S = количество целых квадратов (количество неполных/2). На уроках математики в начальной школе рекомендуется использовать палетку в виде прозрачного листка, на который нанесена сетка с квадратами (стороны по 1 см). Это объясняется тем, что в младших классах ученики работают с фигурами небольших размеров.

В современных учебниках по математике описаны подробные шаги по изготовлению и применению палетки. Рекомендуется использовать лист из тетради в клеточку. Из него вырезается самостоятельно школьником квадрат со сторонами 10х10 и ячейками в 1 см. Такой инструмент значительно упрощает работу, связанную с вычислением площадей фигур с неровными краями.

Очертания полученного шаблона обводятся чёрным маркером. Им же осуществляется дополнительная разметка составных квадратиков. Предполагается, что подобный метод значительно упростит и ускорит вычисления. Школьнику будет легко и просто посчитать количество полных и неполных квадратов. Полученная палетка оборачивается с двух сторон скотчем либо самоклеющейся обложкой.

За счёт использования маркера отсутствует необходимость в повторной обводке прозрачного шаблона.

Чтобы школьнику было удобно понять, как получается математическое значение, палетку нужно наложить на неровно очерченную поверхность и подсчитать количества полных и неполных квадратов. В современных учебниках по математике первого понятие обозначается буквой P, а второе — N. Общий вид формулы: S=PxN/2.

Другой вариант записи: S=N+M/2, где

  • N — целые квадраты.
  • M — неполные квадраты.

Необходимо учесть, что полученный результат считается приблизительным, так как площадь и размер неполных квадратиков разная.

Примеры вычислений

В математике встречаются фигуры с неправильными границами, к примеру, овал. Для вычисления его площади понадобится палетка. Её нужно наложить сверху, подсчитав квадраты внутри границ овала. Предварительно подсчитывается количество целых клеток. Их вышло 34.

Кусочков насчитывается 8. Так как 8 — чётное число, поэтому два неполных квадрата можно засчитать за один целый. Если восемь разделить на два, получится четыре. Если к 34 добавить 4, получится 38. Площадь овала будет примерно равна 38 квадратиков или 38 квадратных сантиметров.

Задача: на тетрадь разлились чернила, появилось пятно. Чтобы выяснить, сколько клеток запачкалось, используется палетка. Так как пятно не имеет чёткой формы, поэтому накладывается сверху шаблон. При подсчёте выходит 17 целых клеток и 24 неполных.

Последнее число делится на два. К результату добавляется 17. Получается около 29 квадратных сантиметров. Другого алгоритма рекомендуется придерживаться, если количество клеток нечётное, к примеру, 30 либо 25. В таком случае на два нужно разделить ближайшую чётную цифру, но больше данного значения на единицу.

Моря и земельные участки

Палетка часто используется учениками на уроках географии. Чтобы найти площадь моря или озера, рекомендуется найти географический атлас либо карту с максимально возможным масштабом. Математический инструмент прикладывается к объекту. Выполняются следующие шаги:

  • Считаются целые квадраты.
  • Затем — неполные.
  • Последний результат делится на два.
  • Полученное число суммируется с количеством целых квадратиков.
  • Записывается ответ.

Можно воспользоваться схемой и для расчёта площади страны, земельного участка, города. Чтобы выяснить примерную площадь местности, потребуется миллиметровая бумага. На ней с помощью карандаша приблизительно рисуется контур участка. Масштаб можно подобрать самостоятельно.

Современные педагоги и психологи считают, что с помощью палетки у детей формируется умение добывать информацию из текста. Дополнительно ученики начальной школы учатся формулировать и аргументировать свои мысли. За счёт шаблона развиваются вычислительные навыки при подсчёте площади разных геометрических фигур.

Плюсы развития операции логического мышления:

  • анализ;
  • синтез;
  • обобщение;
  • аналогия.

Используя палетку, ребёнок учится анализировать свою деятельность. Одновременно развиваются действия самоконтроля, взаимоконтроля, прививается аккуратность, точность при построении разных фигур. Палетка помогает ученикам научиться записывать правильно площадь, переводить одни единицы в другие, решать математические и географические задачи.

С её помощью дети учатся работать с геометрическими фигурами, соблюдая порядок выполняемых действий в числовых выражениях со скобками либо без них.

Ссылка на основную публикацию
Статьи на тему:

Adblock
detector